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Abstract

This thesis presents an object recognition algorithm that is designed
for the RoboCup@Home. It utilizes 3-dimensional data acquired by a
Kinect in order to detect objects that are placed on tables or simi-
lar plane surfaces. Fast Point Feature Histograms and hue histograms
are combined for the feature extraction from objects, which are then
matched with previously trained objects. The algorithm has been im-
plemented by using the recently published Point Cloud Library. The
implementation has been evaluated with several objects and has shown
a recognition accuracy of 94%.
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1 Introduction Marcel Jünemann

1 Introduction

The goal of this thesis is the development of an object detection and recog-
nition software for a new RoboCup@Home team, which designs a robot uti-
lizing an electric wheelchair. The RoboCup@Home is an annual competition
for autonomous service robot projects and consists of multiple benchmark
tests in a home environment setting. Object recognition is primarily re-
quired in the ”Go Get It!” test, which is explained in the rule book 2011 [8]
as follows: In preparation for the test, the team selects 10 objects from 20
predefined everyday household objects. The team is then allowed to train
the robot with these 10 objects, so that the robot can recognize them later.
During the test, four of these objects are placed in the setting, two on a
table or a similar flat surface and two on the floor. The task is to recognize
them, grasp them and finally retrieve them to the operator. An additional
difficulty is the presence of four objects that the robot did not learn. It
must not retrieve these unknown objects and therefore has to be able to
distinguish between known and unknown objects. This thesis only covers
the detection and recognition part of the task.

Figure 1: RoboCup@Home setting with a robot of the GT@Home team performing
the ”Go Get It!” test. Image source: [15]
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1.1 Outline Marcel Jünemann

1.1 Outline

Our robot features a Kinect, which is a device published in 2010 as a mo-
tion sensing controller for Microsoft’s Xbox 360 video game console. The
Kinect possesses a depth sensor and therefore provides us with a point cloud
of the acquired scene, where each point is annotated with its position in 3-
dimensional space. Section 2 presents and discusses an algorithm for the
detection of objects. It is based on the assumption that objects are always
placed on a plane surface, which is true in the RoboCup@Home context.
Thus, it detects tables and other plane surfaces at first, so as to extract
the point clouds of objects placed on those surfaces afterwards. Section 3
discusses the feature extraction from objects in order to match detected ob-
jects with objects learned in the training stage. Color descriptors as well as
surface descriptors are utilized for this task.

An implementation of the detection and recognition is presented in sec-
tion 4. The implementation uses the recently developed Point Cloud Li-
brary (PCL), which simplifies the handling of 3-dimensional point clouds
by offering data structures as well as various algorithms that operate with
point clouds. PCL is a novel library that was founded in 2010 and officially
published in 2011 [21]. Finally, section 5 demonstrates how to use the im-
plementation in practice, and section 6 evaluates the accuracy of the object
detection and recognition.

1.2 Related Work

Object recognition is a research topic that is currently intensely investi-
gated in computer vision and related research fields. In context of the
RoboCup@Home, the existing teams summarize their approaches in team
description papers, for example [10, 17, 23]. The detection of plane surfaces
like tables is discussed in [3, 7, 16, 29]. There are various descriptors for the
purpose of object recognition, which use color information [6, 26], interest
point extraction [1, 12, 25], or 3-dimensional surface structure [9, 19, 20, 22].
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2 Object Detection

This section presents an algorithm for the detection of objects. As mentioned
in the introduction, we will assume that the objects are placed on a table
or a similar planar surface area, e. g. on a shelf or on the floor. Therefore,
the largest part of this section covers the detection of these surface areas.
Once we estimated a table, the objects on it can be extracted by Euclidean
clustering.

2.1 Preprocessing

Figure 2: The origin of our coor-
dinate system is the Kinect.

The 3-dimensional point cloud that we re-
ceive from the Kinect contains more than
300,000 points. Although this are fewer
points than modern digital cameras acquire,
we try to reduce the number of points in the
first step because we have to iterate over
the entire point cloud multiple times. Since
the region that the arm of our robot can
reach is limited horizontally, we can ignore
the area that is too high above our robot. If
the robot arm is not able to grasp objects on
the floor, we can also ignore all areas that
are too low. Since every point of the input
point cloud is denoted with x, y and z coordinates, we filter out all points
with too high or too low z-values (see Figure 2 for the coordinate system).

Additionally, to reduce the number of points further, we downsample the
point cloud by using a voxelized grid approach, i. e. we divide the point
cloud into a grid of voxels which are equivalent to pixels in the 2-dimensional
space. In this case, I chose the size of the voxels to be 1cm x 1cm x 1cm.
Then, we replace all points in each voxel by a single point, which we place
at the centroid of the voxel. Note that all sizes and lengths mentioned in
this section, like the voxel size, are only suggestions that I found to work
satisfactorily, but will be adjustable in my implementation. The bigger the
voxel size, the better is the quality of the object detection, but the longer is
the run-time of the detection algorithm.

2.2 Table Detection

In order to detect tables in the downsampled point cloud, I will present three
slightly different approaches. The task is not only to detect the points of
the cloud that belong to the table, but also to estimate a plane model that
fits these points.
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2.2.1 Random Sample Consensus

The Random Sample Consensus (RANSAC) algorithm is a general algorithm
for fitting models to data that contains many outliers. The algorithm was
proposed by Fischler and Bolles [5] in 1981 and is very often used to detect
tables (or planes in general) in 3-dimensional point cloud data [18, 16, 29, 3].
In our case the outline of the algorithm is as follows:

1. Select three points from the point cloud randomly. If the three points
do not define an unambiguous plane, i. e. they are collinear, select
another three points.

2. Estimate the plane model from the three points, i. e. calculate the
parameters a, b, c, d for the Hesse normal form

ax+ by + cz + d = 0

3. Count how many points of the cloud support the model. A point
is considered an inlier if it’s distance to the plane does not exceed a
certain threshold (e. g. 1cm).

4. Repeat 1.-3. until the maximum number of iterations (e. g. 1,000) is
reached, and return the plane model with the most inliers.

In order to use the RANSAC algorithm to detect more than one table, we
remove the inliers of the found table from the point cloud and start the
algorithm again.

2.2.2 Surface Normals

All to often, the RANSAC approach considers points, that are not part of
any table, as inliers of the plane model. To reduce the number of these
false positives, a common improvement is to take the surface normals into
account [20, 7].

Estimation of surface normals The surface normal vector ~n at a single
point ~p is defined as the vector orthogonal to the plane that tangents the
surface at ~p. For the estimation we consider only the k nearest neighbors
of ~p, where k is a constant. If k is too low, the normal estimation is highly
influenced by outliers, i. e. by the noisy data acquired through the Kinect.
In contrast, if we select k too high, our normals are smoothened and do
not represent the details of the surface. A value that provides satisfying
results for noisy data is k = 10 [20]. We will determine the tangent plane
approximately by a least squares approach, thus we will minimize

k∑
i=1

((~pi − ~x) · ~n)2

4
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where ~pi is a point of the k-neighborhood and ~x is a point of the tangent
plane. Of course, the query point ~p itself is a point of that plane, and
therefore we could set ~x = ~p. However, if we choose ~x to be the centroid of
the k-neighborhood

~x =
1

k

k∑
i=1

~pi

and thus estimate a plane parallel to the tangent plane, we can calculate the
~n with the smallest error directly from the covariance matrix C ∈ R3×3

C =
1

k

k∑
i=1

(~pi − ~x) · (~pi − ~x)T

Of the three eigenvectors of C, the eigenvector with the smallest eigenvalue
approximates ~n [2, 18].

Because this approach could either return an inward-pointing or an outer-
pointing normal vector, we flip all normals towards the viewpoint (the
Kinect), so we can compare the vectors among each other. Certainly, this is
a relatively straightforward algorithm for the problem of normal estimation,
and more complex algorithms, which are faster and yield better approx-
imations, exist. [11] compares some of them and performs a benchmark
analysis.

Figure 3: A 3-dimensional k-d
tree. The split on the first level of
the tree is shown in red. The sec-
ond level is illustrated with two
green rectangles and the third
level with four blue rectangles.
Image source: [28]

k-nearest-neighbors search In the last
paragraph we assumed that we know which
k points are the nearest to our query point.
But the nearest neighbor search is a non-
trivial problem, because the computational
complexity of the calculation of a full dis-
tance matrix is O(n2), and thus unaccept-
ably slow. The commonly utilized data
structure for this task is a k-d tree. Ba-
sically, a k-d tree is a binary tree that
partitions the nodes in space. In our 3-
dimensional case, the first level of the tree
partitions all points by their x-value. The
second level uses the y-value, the third par-
titions by z, and the fourth by x again etc.
An example of a 3-d tree is visualized in Fig-
ure 3. Similar to an usual binary tree, we
can build the tree for n points in O(n log n)
[28]. Unfortunately, even for a k-d tree there are no algorithms that perform
a k-nearest-neighbors search faster than O(n) for a single point [13]. But if
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we do not insist on exact results, many algorithms exist that can perform an
approximate nearest neighbor search much faster. Since approximations are
fine in our case, we use the algorithm proposed by Muja and Lowe in [13]. It
combines multiple search algorithms by automatically selecting the best al-
gorithm and it’s parameters depending on properties of the given data. My
implementation will use the FLANN library, which is an implementation of
this sophisticated algorithm and is available as free software.

Integration with RANSAC Now that we know how to calculate the
surface normals, how can we use them to improve the table detection? We
will integrate the surface normals into the RANSAC algorithm. Previously,
we considered a point ~p as an inlier of a plane model E if

d(E, ~p) < δ

where d estimates the Euclidean distance between E and ~p and δ is a certain
threshold. Considering the surface normals, we change this condition to

α · ∠( ~np, ~nE) + (1− α) · d(E, ~p) < δ′

where ∠( ~np, ~nE) denotes the angle between the estimated normal vector at ~p
and the normal vector of the plane model. The authors of [20] used α = 0.1
and δ′ = 0.02 in their implementation.

2.2.3 Orthogonal Normal Filtering

Unfortunately, the RANSAC algorithm is slow and therefore the major bot-
tleneck of the whole detection process. But we can detect tables much faster
if we know the angle between the Kinect and the floor. This is the case for
our robot, and in general for most of all existing robots. The angle is only
hard to determine if the Kinect is continuously shaken, e. g. on a humanoid
robot. Once we know the angle between the Kinect and the floor, we know
the approximate normal vector of all tables, because tables are in general
parallel to the floor. Thus, if the Kinect is straight in relation to the floor,
all points of flat surfaces have a normal vector parallel to the z-axis (re-
member Figure 2 for the orientation of the axis). This is also true for a
non-zero pitch angle of the Kinect if we rotate the whole point cloud around
the y-axis at first. Therefore, in order to detect tables much faster, we filter
out all points whose normal vector is not approximately parallel to the z-axis.

As you can see in Figure 4, not all points of the filtered point cloud are
necessarily part of a table or similar surface that we want to detect, but we
can now utilize a clustering algorithm in order extract the tables from the
point cloud. We consider points to be in the same cluster if their distance
is below a certain threshold, e.g. 5cm (Euclidean clustering). This way,
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Figure 4: A crowded scene with a table in the foreground. The Figure shows only
points whose surface normal is orthogonal to the floor.

we can detect flat surfaces reliably if we drop all clusters that do not meet
additional a priori conditions, for example a minimum width of 10cm. After
the clustering, we estimate a plane model for each cluster by executing the
RANSAC algorithm on the cluster, but this time the algorithm is much
faster because it does not operate on the whole point cloud.

2.2.4 Convex Table Hull

Now that we detected all tables and estimated a point cloud as well as a
supporting plane model for each, we calculate a convex hull in the next
step. The reason for this is shown in Figure 5: The Kinect can not acquire
regions of a table that are hidden by an object. Therefore, we get a more
appropriate representation of the table by using its convex hull.

2.3 Object Cluster Extraction

For the extraction of the objects on a table you should always have in mind
that the Kinect does not acquire a full 3-dimensional representation of the
objects. Instead it acquires only a ”2.5-dimensional” representation which
contains the points that can be seen from the Kinect’s point of view (as seen
in Figure 5). Once we estimated the convex hull of a table, we can extract
all points above this convex hull, using the plane mode, in order to get the
point cloud of the objects on that table. A problem might be that we also
extract points that are part of the table surface, because the data is noisy,
our table detection not perfect, and because we defined a range, in which

7
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Figure 5: Side view of a triangular table with a box placed on it. The region behind
the object is not acquired by the Kinect. Nevertheless, the convex hull drawn in
green represents the table correctly.

a point is considered an inlier of the plane model. As a solution, we only
extract points with a certain distance to the table, e.g. only points that are
at least 5mm above the table. The 5mm cut off from every object’s bottom
is a clear disadvantage, but our robot can only operate with objects that
are at least a few centimeters high anyway, and thus this should not be a
serious problem for the detection as well as the recognition.

Since there can be more than one object on each table, we have to cluster
the previously extracted point cloud into the single objects. In the context
of RoboCup@Home we may assume that there are several centimeters space
between all objects, and therefore perform the clustering with an Euclidean
approach. For example, points that are at least 5cm away from each other
are considered to be of different objects.

2.4 Projected Object Clustering

We can achieve a small speed-up if we perform the clustering in 2-dimensional
space. For this purpose, we project the object point cloud to the estimated
plane model of the table, and extract the object clusters in 2-dimensional
space. Then we calculate the convex hull of each cluster and extract all
points above this convex hull to get each object’s final point cloud. Besides
the speed-up, our clustering is now able to detect objects that consist of
horizontally separated components, like the bottle shown in Figure 6. But
an even bigger advantage is that we can easily use the original point cloud
instead of the downsampled point cloud in the last extraction step. This
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way, we get a fully detailed version of all objects, which is essential for the
following step, the object recognition. Finally, we can ignore those object
clusters that are too small to be an object or too small to be manipulated
by our robot, e.g. clusters that are smaller than 5cm in height.

Figure 6: The Kinect was unable to recognize the transparent surface of this bottle.
The cup and the front label were recognized, as well as parts of the label on the
back side which could be seen through the transparent surface of the bottle.
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3 Object Recognition

Object recognition is a non-trivial task. It is not possible to compare objects
point by point in order to match them, because even every acquisition of
the same object is slightly different. Our algorithm has to recognize objects
from different distances, from different points of view, and under different
lightning conditions. Thus, object recognition is done by utilizing descriptors
which extract certain characteristic properties of the object. This section
will present descriptors that focus on color properties of the object, as well
as surface descriptors and such descriptors that use special interest points of
the object. All of them have in common that they extract a feature vector,
i. e. they project the object into Rn. These vectors can then be used to
match detected objects with previously trained objects.

3.1 Interest Point Detection

Object recognition systems operating on 2-dimensional images usually ex-
tract special interest points from the image. The most widely used algorithm
for this is the Speeded Up Robust Feature (SURF) algorithm proposed in
[1]. It extracts interest points from the image by analyzing the color inten-
sity distribution, and estimates various features in the region around these
points. The interest points can then be matched with interest points from
trained images.

Figure 7: The detected interest points of the left image are matched with the
detected interest points of the right image. Unfortunately, the left image is a bottle
and the right image is a mug with an image of the same bottle on it. Interest
point detectors that use only 2-dimensional information are not able to detect this
difference, which is important for a robot in a human living environment. Image
source: [18]

However, a disadvantage of 2-dimensional object recognition is demonstrated
in Figure 7. Since we can use the data of the Kinect’s sensor, we will rather
use a 3-dimensional descriptor. There are also interest point extractors that
operate on 3-dimensional data, like the recently proposed Normal Aligned
Radial Feature (NARF) [25]. Nevertheless, interest point descriptors are
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designed to extract features of whole scenes, but we already extracted the
isolated point clouds of the detected objects. Therefore, we will rather use
a descriptor that operates on the isolated point cloud, as presented in the
following section.

3.2 3-Dimensional Surface Descriptors

3.2.1 Point Feature Histograms

Point Feature Histograms (PFH) were proposed by Rusu et a l. [22] in 2008.
PFH is a surface descriptor for a single point of a point cloud and is the base
for more complex descriptors which I will present in the following sections.
The estimation of PFH requires the preceding calculation of the surface
normals described in section 2.2.2. The key idea is to create a feature that
represents the difference of a point’s normal in relation to the normals of
adjacent points, thus describing the geometrical properties of the point.

In the first step of the estimation we search for the k nearest neighbors
of the query point p. For each pair (ps, pt) in the resulting set of k + 1
points we then calculate three angles α, φ and θ which represent the re-
lation between the point’s corresponding normals ns and nt. We define a
frame originated in ps in the following way:

u = ns

v = u× pt − ps
‖pt − ps‖2

w = u× v

Figure 8: We define a frame uvw in ps. Our
features α, φ and θ describe differences be-
tween the normals ns and nt. Image: [18]

where ‖pt − ps‖2 is the distance
between ps and pt. α, φ and θ
are now defined as shown in Fig-
ure 8.

α = v · nt

φ = u · pt − ps
‖pt − ps‖2

θ = arctan(w · nt, u · nt)

For each of the three angles we get
(
k+1
2

)
values. By dividing the value

ranges into q equally sized bins, we create a 3-dimensional histogram with
a total of q3 bins. Therefore, every bin increment stands for a pair of points
having certain values for all of the three angles. Of course, a higher number
of bins results in a more detailed description of the point’s surface. To give
an example, the PFH implementation in the Point Cloud Library sets q = 5
by default.
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In order to use the PFH descriptor as a feature of an entire point cloud,
we simply sum up the histograms of all points in the cloud to a single his-
togram. To preserve invariance to scaling of the object, we normalize the
histogram by dividing each value by the number of points in the cloud. Since
the run-time of the calculation of a histogram for a single point is O(k2), the
calculation for an entire point cloud consumes O(n · k2) which is too slow
for real time usage on current computers [19].

3.2.2 Fast Point Feature Histograms

A Fast Point Feature Histogram (FPFH) is a surface descriptor which is
based on PFH and has been introduced in [19]. The major improvement of
the FPFH is that it can be calculated in O(n · k) for a point cloud with n
points. This enables a feature extraction in real time while having a dis-
criminative power nearly as good as PFH’s.

Instead of calculating the differences between each pair of points in the
k-neighborhood of a point p, we calculate them only between p and every
other point in the k-neighborhood. This reduces the number of calculations
for a single point from

(
k+1
2

)
to k. This is called Simplified Point Feature

Histogram (SPFH). Of course, the PFH is a much better descriptor for the
surface of a point, because it also takes the relations between neighboring
points into account. To improve the SPFH without increasing the computa-
tional complexity, we weight the SPFH of the query point pq with the SPFH
values of the k neighboring points in the following way:

FPFH(pq) = SPFH(pq) +
1

k

k∑
i=1

1

wk
· SPFH(pk)

where wk represents the distance between the query point pq and the neigh-
boring point pk. FPFH(pq) is our final Fast Point Feature Histogram for the
point pq. The calculation is clarified in Figure 9. Through the weighting
we even include those points into the calculation which are not in the k-
neighborhood of the query point, but in the neighborhood of a neighboring
point of pq.

Furthermore, this is not the only improvement of FPFH compared to PFH
that was introduced in [19]. A problem of the 3-dimensional histograms
is that a large number of bins of the histogram is zero if a specific bin of
a single feature is zero. For example, let us assume that q is 5 and there
are no values of α in the value range 72◦ to 90◦. One of the five bins
(20%) of the α-histogram is now zero. Since the 3-dimensional histogram
combines all features, our resulting histogram with 125 bins has at least 25
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Figure 9: Scheme of the neighborhood of an example point pq. The FPFH of pq
is influenced by its 5 neighboring points and indirectly by their neighbors. Image
source: [18]

(also 20%) bins that are zero. Thus, we give up expensive space in the final
histogram for an information that could have been saved much easier. To
avoid this, FPFH passes on the combination of the three feature histograms
and instead just concatenates them. As compensation to the information
loss by not combining the features, we can divide the feature histograms into
more bins, because the final histogram now contains 3q instead of q3 bins.

Figure 10: Example Fast Point Feature Histogram of a real object with 3 · 45 bins

3.2.3 Viewpoint Feature Histograms

An addition to the FPFH was made in [20] in 2010. The authors wanted
their robot not only to recognize the object, but also the exact pose of
the object. Therefore, the proposed Viewpoint Feature Histogram (VFH)
concatenates the Fast Point Feature Histogram with a viewpoint histogram.
The viewpoint histogram contains the distribution of the angles between

13
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all surface normals and the vector from the viewpoint to the centroid of
the whole object. The centroid is used in order to remain scale invariance.
The authors used the VFH for an object recognition system and their tests
with over 60 relatively similar objects have shown a recognition and pose
estimation accuracy of over 98%.

3.3 Color Descriptors

In order to be able to distinguish objects that only differ in their color and
not in their surface structure, we will also utilize a color descriptor.

3.3.1 RGB Histograms

The color information we receive by the Kinect is a common RGB value. We
get three integers R, G and B in the range from 0 to 255, denoting the red,
green and blue component of the color. A simple approach towards adding
a color descriptor to our object recognition is to fill the RGB values of all
points into a histogram. Similar to the situation described for the Fast Point
Feature Histogram (section 3.2.2), we can either create one 3-dimensional
histogram combining all color components, or create three 1-dimensional
histograms. Either way, RGB histograms are only a representation of the
absolute colors and are variant to basic photometric transformations, such
as light intensity changes, which can be expressed as a multiplication of all
components with a scalar. Light intensity changes are very common, since
they not only occur when the intensity of the light source is changed, but also
when our object is shaded. Therefore, we are looking for a color descriptor
τ that satisfies the following condition:

τ(

RG
B

) = τ(

α 0 0
0 α 0
0 0 α

RG
B

)
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3.3.2 Transformed Color Histograms

Transformed color histograms are invariant to light intensity changes be-
cause the color components are normalized before comparison. For a given
set of RGB values (namely, a point cloud) we compute the mean µ as well
as the standard deviation σ for each of the three color channels. The nor-
malization proceeds as follows:

τ(

RG
B

) =


R−µR
σR

G−µG
σG

B−µB
σB


The mean of every channel after the transformation is 0, the standard de-
viation is 1. Since transformed color values can get exorbitant high if the
standard deviation is small, we have to specify a value range which we want
to save in our histogram. Examples are [−3.0; 3.0] for saving most of the
values, or [−1.0; 1.0] for saving much information per histogram bin, while
disregarding 1

3 of all points. Through the normalization the histogram is not
only invariant to light intensity changes, but also to light intensity shifts,
which occur due to scattering of light or interreflections [26] and can be
specified by an offset that is added to every color component:

τ(

RG
B

+

ββ
β

) =


(R+β)−(µR+β)

σR
(G+β)−(µG+β)

σG
(B+β)−(µB+β)

σB

 =


R−µR
σR

G−µG
σG

B−µB
σB

 = τ(

RG
B

)

Transformed color histograms are also invariant to light color changes. Thus,
the descriptor produces the same description for an object under violet light
and under red light. These changes can be modeled as multiplying each
channel with a different scalar.

τ(

α 0 0
0 β 0
0 0 γ

RG
B

) =


(α·R)−(α·µR)

α·σR
(β·G)−(β·µG)

β·σG
(γ·B)−(γ·µB)

γ·σB

 =


R−µR
σR

G−µG
σG

B−µB
σB

 = τ(

RG
B

)
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3.3.3 Hue Histograms

(a) RGB color space (b) HSV color space

Figure 11: (a) shows the RGB color space which is illustrated as a 3-dimensional
cube. The HSV color space (b) is a transformation of the RGB space and is illus-
trated as a cylinder. The diagonal from white to black in the RGB cube is identical
to the value axis (V) in the center of the HSV cylinder. The angle around this
diagonal corresponds to the hue (H), although, by definition of the HSV space, it
is not completely equal. Image source: [27]

The HSV color space A different approach is to transform the RGB
value into the HSV color space, which is shown in Figure 11. We are mainly
interested in the hue, because it approximates ”the degree to which a stimu-
lus can be described as similar to or different from stimuli that are described
as red, green, blue, and yellow” [4]. The transformation from RGB to HSV
is defined by the following formulas:

V = max(R,G,B)

C = V −min(R,G,B)

H =


undefined if C = 0,

60◦ · G−BC mod 360◦, if V = R

60◦ · B−RC + 120◦, if V = G

60◦ · R−GC + 240◦, if V = B

S =

{
0, if C = 0
C
V , otherwise

Saturation weighting When we fill the hue values of our point cloud
into a histogram, we get a color descriptor that is robust to light intensity
changes, as well as to light intensity shifts. The major drawback is that
we do not know where to fill in black, white and gray. Since the definition
leaves the hue for these colors undefined, we could simply skip these colors
and avoid to integrate them into the histogram. But this does not solve
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the entire problem: The colors (H = 120◦, S = 1.0, V = 1.0) and (H =
120◦, S = 0.01, V = 1.0) would both be classified as green, although we
would perceive the first as green and the second as white. The calculated
hue is always unreliable for low saturations. To solve this problem, we weight
every increment of the histogram with the saturation, as suggested in [26].
Our improved color descriptor is still invariant to light intensity changes,
but we have to give up the invariance to light intensity shifts:

S(

α 0 0
0 α 0
0 0 α

RG
B

) =
max(αR,αG,αB)−min(αR,αG,αB)

max(αR,αG,αB)

=
α ·max(R,G,B)− α ·min(R,G,B)

α ·max(R,G,B)

=
max(R,G,B)−min(R,G,B)

max(R,G,B)
= S(

RG
B

)

S(

RG
B

+

αα
α

) =
max(R+ α,G+ α,B + α)−min(R+ α,G+ α,B + α)

max(R+ α,G+ α,B + α)

6= max(R,G,B)−min(R,G,B)

max(R,G,B)
= S(

RG
B

)

Because the classification still relies on the hue only, a light intensity shift
only scales the histogram. An offset, which is for example produced by a
light color change, would be much more drastic in matters of comparison of
two hue histograms.

Value threshold The last problem, which I will address, are low color
values (V). Similar to a low saturation, which results in white, a low value
results in black: (H = 240◦, S = 1.0, V = 1.0) and (H = 240◦, S = 1.0, V =
0.01) are both classified as blue, but the second color would be perceived
as black by humans and could easily be an imprecision of the camera. We
can not weight the histogram with the value this time, because this would
give up the invariance to light intensity changes. Instead, I added a value
threshold to the color descriptor. We only consider a point if the value of
the point’s color is above this threshold. One could argue that this also
gives up the invariance to intensity changes, but since this holds only for
intensity changes that result in a very dark scene anyway, the advantages of
a threshold outweigh the disadvantages.
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Figure 13: The figure shows three histograms with 120 bins each. The x-axis de-
notes the hue range, the y-axis denotes the number of occurrences of the respective
hue weighted with the saturation. The bottom figure shows the same histograms,
zoomed in with factor 10, to be able to distinguish the histograms in areas with
low values.

Figure 12: Three objects with
different colors: (a) red and yel-
low, (b) green and blue, (c) black

Example To give an example, I created
hue histograms for the front view of the
three objects shown in Figure 12. I chose
objects with very different colors to create
three distinct histograms. The results are
shown in Figure 13. The yellow line, which
has a huge peak in the red area, represents
object (a). The histogram of the green ob-
ject with a blue label (b) is drawn with a
blue line. Though it also has it’s peak in
the red range, the values in the green and
blue range are higher than the values of the
other two objects. Object (c) is drawn black
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and has in general small values compared to the other objects, since the sat-
uration of black is low. It might surprise that the red region dominates
for all objects, although only one of them is partly red. The explanation
for this is not obvious, but simple: The used light source, a standard light
bulb, does not produce pure white light, but instead light that has a higher
red component compared to the green and blue component. Therefore, the
saturation of points that are not red can not be as high as the saturation of
red points. Also, white and black points whose values exceed our threshold
are classified as red, even though with a low saturation. This situation is
similar to the Fast Point Feature Histogram, where small angles occur more
often than large angles. But it is not necessarily a problem if our algorithm
for histogram matching is designed to compensate these imbalances. I will
discuss the histogram matching algorithm in section 3.5.

3.4 Object Descriptor Selection

As mentioned earlier, I will combine a 3-dimensional surface descriptor with
a color descriptor. I will not use an interest point extractor at all, although
the winner teams of the RoboCup@Home 2009 [24], 2010 [17] and 2011 [10]
used SURF or a similar descriptor for their object recognition. But the
RoboCup@Home does not focus on object recognition, and therefore this is
no evidence that SURF is the best known algorithm for object recognition.
Since we already extracted the isolated point cloud of an object, an interest
point detection seems inappropriate.

As a surface descriptor I will use Fast Point Feature Histograms. I will
not use Viewpoint Feature Histograms since the pose information is only
useful if the robot has to grasp an object at a certain point of the object,
e.g. the handle of a mug. If the robot features only a clumsy arm and grasps
all objects by simply approaching them from two sides, the exact pose in-
formation is irrelevant.

For the color part I will use hue histograms. While transformed color his-
tograms are, in opposition to hue histograms, invariant to light color changes,
their discriminative power is much smaller. They are even unable to detect
the differences between an entirely blue and an entirely green object. There-
fore, hue histograms are better suited for our object recognition purpose.

Since the hue histogram and the FPFH are both histograms, we can com-
bine them to a single feature histogram by concatenation. The weighting
between color and surface descriptor can be regulated via the number of
bins and will be discussed in the section that presents my implementation.
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3.5 Feature Matching

Now that we decided how to extract a feature histogram from a point cloud of
an object, we need an algorithm for matching two histograms, in order to be
able to compare a detected object with the objects we learned in the training
phase. Since we can write each histogram as a feature vector (a1, a2, ..., am),
the first approach would be to calculate the difference between two feature
vectors ~a, ~b with the Euclidean metric:

d(~a,~b) = ‖~a−~b‖ =

√√√√ m∑
i=1

(ai − bi)2

But we have seen in Figure 10 and Figure 13 that some bins of the histogram
use to have much higher values than other bins, e.g. the red component is
more present in the hue histogram than the blue component. Therefore, the
Euclidean distance is mostly determined by these few bins. In order to avoid
this, we employ the Chi-square metric, which normalizes each bin. In our
case, when all values are non-negative, the Chi-square distance is estimated
as follows:

dChi(~a,~b) =

√√√√ m∑
i=1

(ai − bi)2
ai + bi

[18] compares various other distance metrics in context of the Fast Point
Feature Histogram. However, the experimental setup is not presented thor-
oughly and the results are counter-intuitive, because the Manhattan metric
is found to have the best accuracy.

The matching of m-dimensional feature vectors can be performed with a
m-dimensional k-d tree. Therefore, the feature vectors of all objects learned
in the training phase are inserted into such a tree. In order to match a
detected object with the trained objects, we perform a k-nearest-neighbor
search on the tree with the object’s feature vector. Regarding the implemen-
tation, the FLANN library mentioned earlier also supports the Chi-square
distance metric.
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4 Implementation

I implemented the presented algorithms for object detection and recognition
as a part of the autonomous wheelchair project. This project is based on
the Open Robot Control Software (OROCOS), which organizes all parts of
the software in modules. An OROCOS module is basically a C++ class
that utilizes an input and output port concept for a smarter management
of the data flow between modules. My implemented software includes four
OROCOS modules as well as two additional C++ classes. Figure 14 provides
an overview of all of them as well as their relationships between each other.
This section gives a description of their interfaces, properties, duties and
usage of libraries.

4.1 Utilized Libraries

Point Cloud Library (PCL) This library was already mentioned in
section 1.1. PCL is extensively used in my implementation since it offers
many implementations of algorithms I talked of in the previous sections and
without which the software could not have been developed in context of a
Bachelor thesis.

Fast Library for Approximate Nearest Neighbors (FLANN) As
stated in section 2.2.2, I use this library to estimate the k-nearest-neighbors
of a point. FLANN is also utilized and therefore required by PCL.

boost The boost library is a well-known C++ library that provides plat-
form independent implementations of various data structures and algorithms.
I will use the library for file system access and shared pointers, which sim-
plify the pointer management. Since PCL also uses shared pointers, boost
is also a requirement for PCL.

Mobile Robot Programming Toolkit (MRPT) This library is used
by our robot project for various tasks and will especially provide access to
the Kinect device.

4.2 RangeScanToPointCloud Module

• Input port: RangeScanIn
Expects Kinect data of type CObservation3DRangeScanPtr as pro-
vided by modules.io.mrpthardware.MrptKinect.

• Output port: PointCloudOut
Provides a 3-dimensional PCL PointCloud of the given Kinect data
with color information (PointXYZRGBA).
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OROCOS modules

Auxiliary classes

DisplayPclPointCloud

Input

MrptKinect

RangeScanToPointCloud

ObjectDetection

ObjectTrainer ObjectRecognition

Database file

user calls

addModel

ObjectModel

ObjectDatabase

Output

RecognitionResults

loadModelsaveModel

Figure 14: The flowchart shows the relationships between all OROCOS modules
involved in the detection and recognition process. The four modules in the orange
area and the two auxiliary classes are implemented by me, in contrast to the Mrp-
tKinect and DisplayPclPointCloud modules which were already part of the project.
In the training phase, the ObjectTrainer module displays the currently detected
object to the user. When the detected and displayed object is the one that the
user wants to train, he calls the addModel method from the command line inter-
face. This causes the ObjectTrainer module to extract the feature histogram of
the object and to save it to an object database. During testing phase, the Objec-
tRecognition module compares all detected objects with the objects loaded from
the object database, and saves the results to a RecognitionResults structure.
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The task of this module is a conversion of a depth and rgb image to a 3-
dimensional point cloud. MRPT already offers a conversion of the range scan
to a MRPT point cloud, called CColouredPointsMap. The MRPT point
cloud is then copied to a PCL PointCloud point by point. MRPT also offers
a direct conversion to PCL via project3DPointsFromDepthImageInto, but
this method is only available if MRPT has been compiled with PCL support,
which we can not assume at the moment.

4.3 ObjectDetection Module

• Input port: PointCloudIn
Expects a point cloud of the scene in which the tables and objects
should be detected.

• Output port: DetectedObjectsOut
Provides a vector of point clouds where each cloud contains the points
of a detected object.

• Output port: PointCloudOut (optional)
Provides the input point cloud plus a green convex hull drawn around
detected tables and a red cuboid around detected objects. This output
port needs to be enabled through the EnablePointCloudOut property,
otherwise the module will not use this port in order to save computa-
tion time.

The ObjectDetection module implements the procedures for table and object
detection that were described in section 2. Extensive use of the algorithms
implemented in PCL is made throughout the module. The following list
enumerates all steps of the detection process:

1. Remove points that are too low or too high to be a table, i. e. out of
the range of the robot arm. This range should be defined by the user
through the HeightFilterMin and HeightFilterMax properties.

2. If PointCloudOut is enabled, copy the input cloud to a visualization
cloud.

3. Downsample the point cloud with the VoxelGrid class.

4. Estimate the normals for the downsampled cloud, using
NormalEstimation and the ten nearest neighbors.

5. Find all points that have an angle between their normal vector and
the z-axis that is smaller than the angle defined in the TableDetec-

tionMaxAngle property. Mark these points as table candidate points.
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6. Extract table clusters from the table candidate points by Euclidean
clustering. Use PCL’s EuclideanClusterExtraction and a KdTree

for this step.

7. For each table cluster perform the following steps:

(a) Estimate a plane model with the RANSAC algorithm that fits the
table cluster. Stop the algorithm as soon as 99% of the points
are considered lying in the plane, with a user specified threshold,
or a fixed number of iterations is reached. Utilizes the SACSeg-

mentation class.

(b) In preparation for the next step, use ProjectInliers to project
all found inliers to the plane model in order to get a point cloud
that fits that model perfectly.

(c) Calculate the 2-dimensional convex hull of the table with the
ConvexHull class.

(d) Discard the table if it does not have a minimum width, minimum
length, or minimum number of points as defined by the user.
The width does not refer to the real width of the table, but to
the width of the projection to the y-axis instead. This calculation
is much faster while providing results that are accurate enough.
Analog, the length refers to the width of the projection to the
x-axis.

(e) If PointCloudOut is enabled, draw the convex hull of the table
to the visualization cloud.

(f) Object detection: Apply the ExtractPolygonalPrismData algo-
rithm to get all points above the convex hull of the table.

(g) Use the ProjectInliers class again to project these points to
the plane model of the table.

(h) Find object clusters in the (2-dimensional) point cloud of pro-
jected points with EuclideanClusterExtraction.

(i) For each object cluster perform the following steps:

i. Calculate the 2-dimensional convex hull of the object cluster.

ii. Extract all points above this convex hull in order to get the
final point cloud of the object. This time we use the original
input cloud read from the input port instead of the down-
sampled version.

iii. Discard the object if it’s height is smaller than a threshold.
The height is calculated by projection to the z-axis.

iv. Discard the object if the distance between the object and
the table exceeds another threshold. These objects are most
likely human hands during the object training.
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v. If PointCloudOut is enabled, draw a cuboid around the ob-
ject. Note that all lines of the cuboid are parallel to the x-,
y- or z-axis to speed up computation and implementation.

8. Write a vector of all detected objects to the output port, as well as
the visualization if requested.

Properties Most of the constants and thresholds in the detection process
can be modified by the user via the following 15 properties, which can be
changed at runtime. Note that the module expects all lengths to be in meter,
although they are listed in centimeter here.

• DownsamplingResolution Default value: 1cm
Minimum distance between any two points after downsampling. This
value has a huge impact on the performance of the detection, therefore
it is important to select this value according to the needs regarding
recognition quality and consumed computation time. The value is
passed on to the setLeafSize method of PCL’s VoxelGrid class.

• HeightFilterMin Default value: -60cm
Minimum z-position of tables relative to the Kinect. If the value is
zero, only tables above the Kinect are detected.

• HeightFilterMax Default value: 0cm
Maximum z-position of tables relative to the Kinect. If the value is
zero, only tables below the Kinect are detected.

• EnablePointCloudOut Default value: false
Whether to write the visualization point cloud to the PointCloudOut

output port.

• TableDetectionMinWidth Default value: 20cm
Minimum width and length of a table.

• TableDetectionMinPoints Default value: 10
Minimum number of points of a detected table.

• TableDetectionMaxAngle Default value: 10◦

Maximum angle of a table point’s normal vector relative to the z-axis
in degree.

• TableDetectionTolerance Default value: 5cm
Minimum distance between two points that are not considered to be
in the same table cloud.

• TableDetectionThreshold Default value: 1cm
Maximum distance for a point to be considered an inlier of a plane
model during the RANSAC algorithm for table detection.

25



4.4 ObjectModel Class Marcel Jünemann

• TableDetectionMaxIterations Default value: 100
Maximum number of iterations for the RANSAC algorithm to termi-
nate.

• ObjectMinPoints Default value: 10
Minimum number of points of a detected object point cloud.

• ObjectMinHeight Default value: 6cm
Minimum height of an object.

• ObjectClusteringTolerance Default value: 5cm
Minimum distance between two points that are not considered to be
in the same object cluster.

• ObjectDistanceToTableMin Default value: 1cm
Minimum distance from an object to the table. This value should not
be too small, otherwise some points of the table surface might be taken
as objects.

• ObjectDistanceToTableMax Default value: 1m
Maximum distance from the table to each point of the object.

4.4 ObjectModel Class

The ObjectModel class takes the point cloud of an object, as acquired by
the Kinect and segmented by ObjectDetection, and extracts the object’s
feature histogram. Furthermore, it saves additional data like the object’s
name. Because every object needs to be trained from multiple perspectives,
we will have various object models for the same object.

Feature extraction As described in section 3.4, we calculate a histogram
that consists partly of a Fast Point Feature Histogram (FPFH) and partly
of a hue histogram. The FPFH could be extracted with PCL’s FPFHEsti-

mation, but this class produces a histogram with only 33 bins, which might
not be enough for our purpose. Instead, we use the VFHEstimation which
procedures a histogram with 308 bins. Since we decided not to use the
viewpoint information for the moment, we extract only the 135 bins that
represent the FPFH. I selected 120 as the number of bins of the hue his-
togram because 120 is a denominator of 360 and is in about the same range
as 135. However, no evaluation has been done to find the optimal number
of bins because there is no obvious metric to estimate that number. The
concatenated histogram has 255 bins and is saved in a vector of 255 floats
(the feature vector).
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Additional data In order to reassign an object model to an object, we
save the name of the object as a string. The user can select this name
freely, although it will usually be a short description of the object, e.g. mug
or bottle. In future applications the user might want to save additional
information about the object. Therefore, we save another string metainfo

which can be filled by the user. For example, it might be decided that we also
need to recognize the pose of the object. In this case the rotation could be
saved to the metainfo string during training and utilized after recognition.

4.5 ObjectDatabase Class

The ObjectDatabase class offers methods for saving and loading object
databases, which are nothing else than sets of object models. It is not
sufficient to have only one large object database, because we do not want
the program to recognize objects that we trained only for earlier experi-
ments. I chose a file format that allows investigation and modification by a
human-being quickly, rather than a binary representation that gives a small
speed up.

Directory structure All databases are saved to a directory that is called
objectrecognition and can be found in the resources folder of the project.
In order to locate this folder automatically, the working directory has to be
either the root of the project (usually autoauto) or any subdirectory of it.
Alternatively, the ObjectTrainer and ObjectRecognition modules offer a
property called AutoAutoPath which takes the path to the root directory.
Every database has it’s own folder in the objectrecognition directory.
The name of the folder is the name of the database, thus you can rename a
database by renaming the folder.

File format The object models are saved in simple text files with the
extension .mdl. Every mdl-file can contain an arbitrary number of object
models, although the object trainer saves an object model to the file of the
respective object, i. e. models for an object with the name ”red mug” are
saved to red mug.mdl. However, this is not mandatory and you can copy
all models of the database to a single file, as long as the extension is .mdl

and the structure of each model in the file is the following:

• The first line starts with a # and informs about the date and time the
object model was acquired.

• The second line contains the object name.

• The third line contains the metainfo string.

• The following 255 lines contain floating point numbers, each represent-
ing one bin of the feature histogram.
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4.6 ObjectTrainer Module

• Input port: DetectedObjects
Expects the point clouds of all detected objects as provided by the
ObjectDetection module.

• Output port: PointCloudOut
Offers the point cloud of a single object.

During the training stage, we want to learn all objects one by one. Therefore,
we usually provide a clear scene where only the one object we want to learn
is present. However, the ObjectTrainer module simplifies this by selecting
the object that is nearest to the Kinect, thus ignoring any object in the
background. Before processing the actual training algorithm, the point cloud
of the selected object is shown to the user via the DisplayPclPointCloud

module. When the user is satisfied by the shown point cloud, i.e. the right
object has been detected correctly, he manually starts the training by calling
the addModel method from the command line interface.

addModel method The addModel method requires three arguments: The
database to which the model should be saved to, the name of the object
which is being trained, and a metainfo string which can be empty. For
example:

addModel("experiment-2011-12-24", "red mug", "front view")

The name and metainfo strings are filled in an instance of the ObjectModel

class that also extracts the feature histogram from the point cloud. The ob-
ject model is then saved to the specified database with the ObjectDatabase

class.

4.7 ObjectRecognition Module

• Input port: DetectedObjects
Expects the point clouds of all detected objects as provided by the
ObjectDetection module.

• Output port: RecognitionResults
Offers the results of the recognition algorithm in the format that is
specified in section 5.3.

The ObjectRecognition module takes the detected objects from the Ob-

jectDetection module and matches each object with the objects from the
object database. The first step of the recognition process is to load the ob-
jects from the object database which is specified in the Database property.
In the next step we build an index as discussed in section 3.5 by utilizing
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the Index data structure from the FLANN library. The library also pro-
vides the distance metric ChiSquareDistance. Of course, we do not want
to repeat the loading and index creation for every new point cloud, and
therefore cache the database and index as long as the user does not change
the Database property. In order to save computation time, we could also
build the index after we finished the training instead of building it at every
start of the program, but since the index creation takes only fractions of
a second, even for hundreds of object models, I passed on the additional
manual operation that would be required after training.
Next, we extract the feature histogram using the ObjectModel class for
each detected object. Then we perform a k-nearest-neighbours search on
the index, where k is defined by the user through the property Hypothe-

sisCount. We get k object models, which are possible matches, together
with the corresponding distances to the analyzed object. These are filled in
a RecognitionResults structure and written to the output port.

Properties

• HypothesisCount Default value: 5
Number of recognition hypotheses to write to the output port for each
detected object, i. e. the number of object models that fit the detected
object best are listed in the recognition results. Note that the number
of listed object models is not necessarily equal to the number of listed
objects, i. e. you could get five different object models of the same
object.

• Database Default value: ”default”
The name of the database that should be used for the comparison of
objects. At the start of the program, the objects are loaded from the
database in the ”default” directory.

• AutoAutoPath Default value: ”.”
The path to the project root or any subdirectory of the project root.
This property is used to locate the resources directory.

Methods The module offers the methods printRecognitionResults and
performExperiment which can be called from the command line interface to
test the recognition functionality. The usage of these methods is described
in the section about testing the object recognition (5.2).
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5 Using the Implementation

While the previous section has described how the implemented software
works, this section will provide a step by step guide on how to use the
modules in context of the OROCOS project.

5.1 Training Objects

In order to train an object, create a simple scene with only one table and put
the object on it. There should not be any other object in the foreground.
Place the Kinect or the whole robot in a spot nearby and start object-

Trainer.xml with the xmltest program from a terminal. For example:

$ cd autoauto/build/tests/xmltests/

$ ./xmltest -L 5 xml/vision/objectrecognition/objectTrainer.xml

Figure 15: Screenshot of the output produced by objectTrainer.xml. (a) The
TaskStatusMonitor on the left side of the window can be used to modify the
properties of the ObjectDetection module. (b) Changes are applied to View 0

immediately, which displays the scene captured by the Kinect. Detected tables and
objects are marked and the mouse can be used to explore the 3-dimensional point
cloud. (c) View 1 displays the detected object that is nearest to the Kinect as it
will be used for the training.

The created window should look like Figure 15. If the table or object is
not detected, you probably have to change the position of the Kinect. You
might also modify the properties of the ObjectDetection module, which
are listed in section 4.3. As soon as the desired object is detected and
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displayed correctly, you can train it by calling the addModel method from
the command line, e. g. :

addModel("experiment-2011-12-24", "red mug", "rotation: 0")

Since each object has to be trained from each side, rotate the object, wait
until it is correctly detected, and call addModel again. The rotation should
not be greater than 30

◦
, which would result in 12 models of the object after

training from each side. Of course, the more models you create, the better
the recognition results will be from various viewpoints. All object models are
written to the resources directory, where you can edit the object databases
and models, as discussed in section 4.5.

5.2 Testing the Object Recognition

To test the ObjectRecognition module, run testRecognition.xml:

$ cd autoauto/build/tests/xmltests/

$ ./xmltest -L 5 xml/vision/objectrecognition/testRecognition.xml

Similar to objectTrainer.xml the acquired scene is displayed with a green
polygon drawn around detected tables and a red box around detected ob-
jects. Now you know which objects are detected, but if you want to know
how these objects are recognized, you have to call the printRecognition-

Results method from the command line. The results are then written to
the standard output as follows:

*** detected 2 objects ***

object #1 located at (0.960104m, -0.0157443m, -0.0149633m)

#46 red mug (rotation: 30) 23.1993

#52 red mug (rotation: 60) 36.6365

#41 red mug (rotation: 0) 44.7708

#47 red mug (rotation: 210) 51.6287

#36 red mug (rotation: 240) 77.4286

object #2 located at (0.976374m, 0.215263m, -0.151597m)

#108 bottle () 148.682

#146 speakerbox (some metainfo) 158.589

#109 bottle () 162.628

#85 red mug (rotation: 30) 164.791

#82 red mug (rotation: 0) 166.643

The position of each object (located at...) is determined by one random
point and is only printed for your information, so you can reassign the objects
to the scene. Each hypothesis is printed in the following format:

#ID objectname (metainfo) distance
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where ID is the internal ID of the object model in the database and distance

is the calculated Chi-square distance between the object model and the
detected object. In the example above, the object red mug was assigned with
viewpoint information during the training stage, thus we can also recognize
the rotation of the detected object.

5.3 Using the Recognition Results

The output port of the ObjectRecognition module is of type Recognition

Results. The data type consists of a vector of all object models from
the object database with their names and meta information, as well as all
detected objects with their point clouds and their recognition hypotheses
including the calculated distances. If you want to use these results in your
OROCOS module, you have to include RecognitionResults.h, where the
data type is defined in the following way:�
struct ObjectModelInfo {

std : : s t r i n g name ;
std : : s t r i n g metainfo ;

} ;
struct Hypothes is {

int model ; // i ndex o f R e c o g n i t i o nR e s u l t s . models
f loat d i s t anc e ;

} ;
struct DetectedObject {

pc l : : PointCloud<pc l : : PointXYZRGBA> : : Ptr pointCloud ;
std : : vector<Hypothesis> hypothes i s ;

} ;
struct Recogn i t i onResu l t s {

boost : : shared ptr<std : : vector<ObjectModelInfo> >
models ;

boost : : shared ptr<std : : vector<DetectedObject> >
detec tedObjec t s ;

} ;
� �
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6 Evaluation

6.1 Object Detection

(a) A table and object detection test setup

(b) Detection results for the right part (c) Detection results for the left part

Figure 16: Detection results for a scene with 8 objects on 3 different surfaces. Tables
are bordered green and objects are bordered red.

In order to test the object detection module, I set up a test scene as shown
in Figure 16(a), which consisted of three plane surfaces, two tables and a
couch, and placed several objects on them. The detection results are split
in two parts 16(b) and (c) because the field viewing angle of the Kinect was
too small for this setup and distance. While all visible tables and objects
are detected correctly in 16(b), there are three detection errors in 16(c):

1. The box drawn around the second object on the couch is too large.
The only possible reason for this is that some of the (blue) points

33



6.1 Object Detection Marcel Jünemann

of the couch are considered to be part of the object. Recalling the
algorithm for the extraction of objects on plane surfaces, we know that
these points are too high above the estimated plane model. Thus, the
error probably occurred due to the surface of the couch, which is not
precisely plane, and therefore the estimated plane model was not high
enough.

2. A small part of the arm rest is detected as a third object on the couch.
Since we have no complete 3-dimensional point cloud of the scene,
but a ”2.5-dimensional” cloud with only a front view of each object
available, it is hard to distinguish between the arm rest and an object.
Our algorithm is not capable of identifying these false positive without
additional a priori information.

3. The leftmost object on the white table is not detected. As you can see
from the convex hull (green), this is because the table is not detected
entirely. Especially in the undetected region of the table, there are
many ”holes” in the point cloud of the table’s surface. The Kinect did
not perceive this region correctly.

However, this has only been an analysis of a single frame, and you should
monitor the detection results in real-time to get an impression of the detec-
tion’s accuracy. Even when we do not change the scene at all, the results
vary from frame to frame. This is due to the highly noisy data that we
receive from the Kinect. The three mentioned errors in Figure 16(c) are all
fluctuating. This emphasizes that the actions of our robot should not be
based on the detection results of a single frame. Indeed, if the robot is able
to evaluate the results of multiply detection attempts, we can achieve very
accurate results. Nevertheless, even the object detection of a single frame
seems to be properly enough for a typical RoboCup@Home scenario.
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6.2 Object Recognition

6.2.1 Test Setup

Figure 17: Test set of 10 objects

Figure 18: Setup for the test

In the scheme of the RoboCup@Home
”Go Get It!” test, I trained the pro-
gram with the 10 objects shown in
Figure 17, which clearly differ in color
and structure. I created a simple
setting for the training with only
one table and one object on it (Fig-
ure 18). After an acquisition of an
object model, I rotated the object by
approximately 22.5◦, thus creating 16
models per object. I used the same
scene for the testing stage.

6.2.2 Test Results

I tested the recognition of each object from 10 different, pseudo-randomly
selected angles, and the results are represented in Table 1. 8 of the 10 objects
were recognized correctly from each angle. The other two objects were also
predominantly recognized correctly, thus resulting in an overall accuracy of
94% out of 100 tests. All mistaken identities occurred when either object
#3 or object #8 was tested from a side view, where the point clouds of the
objects are very slim. Therefore, the accuracy appears to be low when the
analyzed point cloud has relatively few points. I will give a possible expla-
nation for this later.
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Object
correct wrong

count avg. distance count avg. distance

#1 10 20.3 0 —
#2 10 25.3 0 —
#3 8 29.3 2 50.4
#4 10 21.6 0 —
#5 10 20.4 0 —
#6 10 10.4 0 —
#7 10 26.5 0 —
#8 6 43.6 4 51.0
#9 10 19.2 0 —
#10 10 18.9 0 —

Table 1: Test results

However, it might even be possible to distinguish correct and wrong matches
by the Chi-square distance. The average distance of incorrectly identified
objects was about 50, while the average distance of correctly recognized ob-
jects was below 30. In this experiment we could have detected all recognition
errors through the definition of a threshold at 40, as long as we would not
care about the marginal results for object #8. But we should operate with
fixed thresholds carefully, because the Chi-square distance might increase
with the Euclidean distance between the object and the Kinect. We stated
earlier that our features are invariant to scale, but in practice a change in
scale also means a change of the viewing angle, because the Kinect has a
fixed high above the ground. To achieve a true distance-invariance, the ob-
ject training has to be done from different distances. In either case, the
introduction of a recognition threshold requires further research.

6.2.3 Advanced Test Set

Inspired by the sound results of the recognition test, I repeated the same
experiment with a seemingly harder test set, whose objects are more similar
to each other. I used the 8 mugs pictured in Figure 19 and received the
results shown in Table 2. The overall accuracy was even slightly better
this time with a 95% ratio. Only #7 and #8 are occasionally confused
due to the fact that their color distributions and surface structures are very
similar. In this case it is unlikely that wrong results can be discriminated
by the Chi-square distance, because the average values are about the same.
Furthermore, the hue histogram seems to serve its purpose, since the mugs
#5 and #6 are completely alike except for their colors.
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Figure 19: Advanced test set of 8 mugs

Object
correct wrong

count avg. distance count avg. distance

#1 10 35.9 0 —
#2 10 23.9 0 —
#3 10 21.4 0 —
#4 10 20.4 0 —
#5 10 25.7 0 —
#6 10 26.8 0 —
#7 7 21.2 3 25.7
#8 9 27.0 1 29.4

Table 2: Test results for the advanced test set

6.2.4 False Positives

A very important part of the ”Go Get It!” test is the presence of objects
that are unknown, because it is a serious problem if a robot recognizes an
unknown object as a known object. Therefore, I tested the recognition with
five different, untrained objects, each from six different angles. The average
Chi-square distance to the best matching object model was 97.7, while the
previously presented experiments resulted in an average distance of 23.8
for correctly identified objects. This strongly suggests the introduction of
a threshold for the detection of false positives as discussed in section 6.2.2.
Still, if such a threshold is indeed needed, the threshold estimation should be
preceded by further research about the distance distribution. This requires
multiple experiments with various distances, which can be done with a robot
much easier, and therefore are not part of this thesis.
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6.2.5 Analysis

Although 180 is still a relatively small number of tests, my implementation
seems to have an recognition accuracy of over 90% for a set of distinctive
objects. Yet, the accuracy ratio of 98.5%, which was claimed in [20] for an
even harder test set, could not be reached. The following paragraphs pro-
vide possible explanations for this.

The authors of [20] used an electric turn table in order to acquire approx-
imately 900 object models per object automatically. In contrast to the 16
manually acquired object models of my experiment, this results in more
exact object model matches. Additionally, the depth sensor of the Kinect,
which utilizes an infrared laser, produces even noisier data than the stereo
camera used in their experiment.

Furthermore, the output of the Kinect is a RGB-image as well as a depth-
image, both produced by different sensors. In order to merge these images
into a single 3-dimensional point cloud, a calibration has to be done, i. e. the
exact distances between the two sensors as well as other properties must be
known. Figure 20 illustrates that the integrated Kinect calibration of the
MRPT library does not yield sufficient results. Although the surface of the
mug is detected correctly, many points are associated with the color of the
background. Since this is a serious problem for the used color descriptor, it
might explain the errors of recognition which occurred in the first test, when
the point clouds were relatively small and thus led to a large percentage of
points with the wrong color.

Figure 20: Point cloud of a mug
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7 Conclusion and Future Work

In this thesis, I presented a system that detects objects in a 3-dimensional
point cloud and matches these objects with previously trained object mod-
els. The next step towards a solution to the ”Go Get It!” test should be to
provide my recognition system with a point cloud that is built of multiple
acquisition frames of the Kinect instead of just one. Thus, all acquired point
clouds of a certain timespan should be merged into a single point cloud of
the environment. The required technique for this is called simultaneous lo-
calization and mapping (SLAM). Sufficient real-time algorithms for this task
already exist, KinectFusion [14] for example, and are even implemented in
the Point Cloud Library. The table and object detection in such a merged
point cloud would be more reliably and could be done by the presented
software without code changes. Furthermore, the noise in the point cloud
could be reduced with the statistical outlier removal algorithm that is al-
ready available in the Point Cloud Library.

Since my recognition module does only produce recognition hypotheses, but
does not state whether an object is really one of the known objects or not,
the recognition results have to be analyzed in order to estimate the action
that the robot should perform. An approach for the RoboCup@Home would
be to get simply the four objects that have the smallest distance to their
respective object model. However, if the number of known objects in the
setting is unknown, it has to be done further research in order to estimate a
Chi-square distance threshold that can distinguish whether a detected ob-
ject is a trained object or not.

The presented system can be used in real-time applications, since the anal-
ysis of a single point cloud takes approximately 500ms. This duration can
be influenced by the various properties which the user can easily adjust.
In conclusion, the evaluation has shown that the system’s performance is
accurate enough for the recognition tasks of the RoboCup@Home.
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